
Swathbuckler: Real-Time Wide Swath Synthetic Aperture Radar Image
Formation Using Embedded HPC

Richard W. Linderman and Joshua Corner
US Air Force Research Laboratory/Information

Directorate (AFRL/IF), Rome, NY
{Richard.Linderman, Joshua.Corner}@rl.af.mil

Scot Tucker
Advanced Engineering & Sciences, ITT

Industries, Rome, NY
Scot.Tucker@rl.af.mil

Abstract

 This high performance computing (HPC) system
processed real-time X-band radar returns into continuous
strip-map, high-resolution (< 1m), wide-swath (37 km)
imagery on-board a Convair 580 aircraft. The HPC
system cost under $100K. The synthetic aperture radar
(SAR) image formation algorithm was optimized to
achieve real-time processing 9000 times faster than the
original algorithm specification. An information
management system allowed real-time off-board
exploitation of the on-board multi-terabyte database.
Real-time SAR image formation was demonstrated on five
flight tests. The completed flights provided 7.3 terabytes
of raw and processed imagery.

1. Introduction

 The Swathbuckler experiment was conducted
between 2001 and 2005 under the auspices of The
Technical Cooperation Program (TTCP). The goal was to
design, implement, and flight test novel system
architecture able to continually process in real-time 37 km
wide radar returns into high resolution stripmap synthetic
aperture radar (SAR) imagery and make this voluminous
information product available everywhere within seconds.
The US, UK, Canada, and Australia all contributed to the
experiment, with the US delivering the embedded HPC
with optimized software. The high performance
computing (HPC) challenge was to reduce the 12.5 hour
runtime of the initial Canadian MATLAB code to two
minutes on a single node. The resulting test image was
1.5 km by 11.2 km. Parallelizing across 24 nodes then
yielded the 37 km deep image—a speedup of over
9000X—which produced imagery at a rate of 3.43
km2/second or 300K km2/day.
 As background, stripmap SAR imagery is produced
by processing the returns from thousands of pulses
emitted by airborne radar as it nominally flies a straight

line. The distance flown as these pulses are emitted
creates a “synthetic” aperture which is much larger than
the radar antenna physically resident on an aircraft. This
allows much higher resolution imagery to be created in
the direction parallel to the aircraft flight path. High
speed A/D converters provide high resolution in the range
direction, which runs perpendicular to the flight path. In
this case, the pixel sizes were less than 1 meter (see
Figure 1 for a sample image).
 SAR applications typically involve sophisticated
processing of large volumes of data[1] to correct for
aircraft motion away from the planned path, compress the
signal returns in the range (perpendicular to aircraft) and
azimuth (parallel to aircraft) directions, and nicely focus
the images. Current SAR systems operate across small
range swaths at any one time due to the processing
limitations associated with generating the imagery. Here
the objective was to parallelize on an embedded HPC to
image a 37 km wide range swath in real time. The SAR
imagery produced during our demonstration processed
returns from blocks of 16384 or 32768 transmitted pulses
into images and wrote them to disk.[2]
 The HPC computational challenge was primarily
related to speeding up the initial MATLAB algorithm to
keep up with the incoming pulses as the aircraft flew.
However, accepting high speed inputs, and writing
finished images to disk were also significant challenges,
especially when implementing on a conventional HPC
cluster to make the system most affordable.

2. Objectives

 The principal objective was to demonstrate in flight
tests that affordable (~$100K) embedded HPC was up to
the challenge of sustaining computational throughput of
100 GFLOPS and thereby allowing high resolution (<1m)
SAR imagery across a 37 km strip to be produced and
exploited in real-time. The principal subcomponents of
this objective were:

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Swathbuckler: Real-Time Wide Swath Synthetic Aperture Radar Image
Formation Using Embedded HPC

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Advanced Engineering & Sciences, ITT,Rome,NY

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2006 IEEE Radar Conference, held in Verona, NY on April 24-27, 2006

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A. High speed data input to the HPC from the radar
frontend

B. Optimized real-time signal/image processing on
the HPC with storage to disk

C. Real-time exploitation and dissemination
D. Integration of the US HPC with the Canadian

radar and aircraft systems and the UK A/D and
frontend hardware

E. Flight test experimentation and data collection

3. Approach

3.1. Overview of the Approach

 The real-time data input used an FPGA to fan-out the
high speed A/D inputs into UDP packets sent to the 24
nodes across eight gigabit Ethernet fiber optic links. The
optimization began by converting MATLAB to C++
which reduced azimuth block formation to 4050 seconds.
Subsequent optimizations including vector libraries and
cache optimizations reduced this down to 15 seconds—
meeting the real-time deadline. Integration with the other
nations began with data exchanges and proceeded to
laboratory testing in Ottawa, followed by five flight tests
in Ottawa and Kingston, Ontario in Aug–Sep, 2005.
During these flights both the raw radar returns and the
formed images were saved to disk to support follow-on
research. The onboard and offboard exploitation used a
publish-subscribe-query information management
environment onboard, linked via 300 kbit radio and the
internet to a like environment on HPCs at Rome, NY and
from there disseminated to users across the DREN.

3.2. Embedded HPC (EHPC) Selection and
Design

 The evolution of the EHPC system architecture
design identified key characteristics of the computing
platform that would provide the most benefit to the SAR
image formation task. Because stripmap SAR image
formation tends to be memory and I/O bound, increases in
DRAM densities, on-board cache sizes, and I/O
bandwidths directly relate to the achievable performance
of the EHPC. From the time of initial concept to flight
tests several improvements in memory and I/O price
performance greatly influenced the final design. For
example, the first EHPC design used a SKY multi-
computer with 16 PowerPC processors on 8 boards with
only 64 megabytes of memory per PowerPC with
Fiberchannel I/O cards (~$1.8M). The second iteration
explored 24 dual Xeon nodes supported by 4 GB of
DRAM, each with an associated Annapolis Wildstar
FPGA board in addition to gigabit and 100 Mb Ethernet
links (~$500K). The flight EHPC employed 24 dual

Xeon nodes with L2 caches sized at 1MB supported by
8GB of DRAM and dual gigabit Ethernet links (~$75K)
with a single FPGA in the frontend to packetize A/D data.
This “Coyote” cluster is the EHPC that was used for the
Swathbuckler flight tests. More details on the system
architecture evolution can be found in Reference 2.
 Figure 2 depicts the final system architecture which
used the EHPC to form hi-resolution SAR imagery across
the 37 km wide swath continuously. The processing load
is linearly related to the speed of the aircraft, which for
stripmap SAR processing sets the pulse repetition
frequency (PRF) of the radar. For this experiment, a PRF
of 500 Hz was sustained. With the system architecture
established, the design of the subcomponents could
proceed.

A. High speed data input to the HPC from the radar
frontend

 A critical component of the system architecture
involved designing a method to move the large data
stream from the radar sensor to the EHPC in a compatible
format to accomplish the signal processing. Because
there were no existing systems to interface the SAR
returns to an HPC a solution was designed. The
resolution requirements dictated a 2 GHz sample rate.
Initially, an Atmel analog-to-digital converter (ADC)
evaluation board connected to an Atmel Demultiplexing
(DMUX) board were selected and fed into a custom board
with a single FPGA and memory. The DMUX slowed the
2 GHz data rate down by a factor of eight to 250 MHz, a
frequency which could be handled with careful FPGA
design. The Xilinx Virtex II Pro FPGAs had recently
become available and supported up to eight high speed
serial I/O links, which in turn could drive gigabit
Ethernet. The FPGA was assigned several tasks. First, it
cut out the range cells of interest from the continuous A/D
inputs—this required also receiving a discrete timing
pulse from the radar controller to precisely know when
each radar pulse was transmitted. Second, since the radar
data was sampled at an intermediate frequency (IF), the
FPGA applied a standard Hilbert transform and low pass
filter to convert it to baseband I,Q conventional
representation. Third, the FPGA chopped up the wide 37
km swath into twenty four subswaths of 1.5 km and
duplicated the necessary overlapping range bins amongst
adjacent subswaths. Finally, the FPGA formed UDP
packets addressed to each of the 24 cluster nodes and sent
them off via the eight gigabit Ethernet ports. Since the
FPGA board was near the radar in the front of the aircraft
and the cluster was in the rear of the aircraft, fiber optic
Ethernet transducers were used to avoid interference in
the noisy RF environment. The FPGA also featured
embedded PowerPC cores, which allowed a serial
interface to external computers to communicate and

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

interactively set most of the operating parameters of the
design, such as range extents, overlaps, etc.
 During testing and integration we discovered that the
initial prototype had crosstalk issues on the incoming
signals from the DMUX board. The integration issues
and cross-talk challenges experienced on the prototype
motivated the use of an integrated solution—which
became a commercial product. The final flight solution
used the Quixilica Neptune and Callisto FPGA-based
cards. The Neptune card accomplished the ADC and
DMUX functions while the conversion to, and
distribution of, multiple Gigabit Ethernet outputs
capabilities were accomplished with the Callisto VXS
FPGA card. Further detail on the design of the interface
between the SAR radar and HPC are found in
Reference 5.

B. Optimized real-time signal/image processing on the
HPC with storage to disk

 Meeting the real-time signal/image processing
requirements on an HPC requires intimate familiarity with
the processing architecture in conjunction with parallel
computing techniques. Each component of the HPC
contributes significantly to meeting the real-time SAR
imaging challenge from the network I/O throughput to
processing performance to applying classes of
optimization techniques to disk I/O and the size of on-
board/on-chip memory. This section details the influence
of these architecture components, the algorithm
implementation tradeoffs, and other system tradeoffs that
contributed to the optimization of the SAR program.
 The stripmap processing is grouped into two
categories in alignment with the dual-node architecture:
range and azimuth processing. Range processing operates
continuously on the incoming range lines and consists of
parameters generation, motion compensation, forward
FFT/range replica and multiply/inverse FFT. Azimuth
processing operates on a block of range lines (i.e., an
azimuth block), which are used to form the output image
and consists of range cell migration correction,
autofocusing, azimuth compression, output resampling,
pixel detection, and imagery scaling.

1) Using data decomposition to map the SAR
algorithm onto the HPC cluster

 To maximize the parallel computing power of the
HPC the algorithm implementation decomposed the data
according to swath width. The 37 km swath divides
easily into 24 pieces such that any one cluster node has
the responsibility to form ~1.5 km swath of SAR imagery.
This allocation allowed for processing at each node on a
localized data set. The large number of FFT calculations
that make up the range and azimuth processing can
operate on each node’s local memory eliminating
otherwise costly FFT inter-node communication. In

addition, all-to-all communications would be required
during multiple corner-turning operations between the
range and azimuth processing. Using data decomposition
the cluster nodes can devote almost all of their time to
processing imagery (in chunks of 16 or 32 K blocks
depending on range) using local memory structures rather
than having to wait on expensive inter-node
communication.
 Figure 3 represents this data decomposition relating
the processed imagery (16K/32K blocks) to each ~1.5 km
subswath along one leg of the flight path.

2) Network I/O
 The external network connection resident on each
node must be able to receive the 16 MB/s of data coming
from the high speed front-end interface. The gigabit
Ethernet connections local to each node satisfied this
requirement.

3) Processing performance and strategy
 Signal and image processing applications use floating
point operations extensively. Using a complexity analysis
one can estimate the anticipated number of FLOPS
required for a solution.
 Table 1 shows the contributing algorithm
complexities of the range processing. For example, the
computational complexity for a 32K FFT is 5n log(n)
where n=32,768 resulting in 2,457 KFLOPS. The vector
multiply, motion compensation, and scaling functions are
measured by counting how many FLOPS are attributed to
addition/multiplication of the vector and scalar
operations. For example a complex vector multiplied by a
complex vector is attributed 6 FLOPS, an addition of a
real vector and a real scalar 1 FLOP, and the cos of a
complex vector 80 FLOPS. The total sustained range
processing for one node is 2.59 GFLOPS/second
assuming we are collecting 500 range lines a second.

Table 1. Range Processing FLOPS

Range Component Size Count FLOP
Convert 32768 1 32768
32K FFT 32768 1 2457600
Vector Multiply 16384 1 98304
Motion Compensation 16386 1 1441968
16K IFFT 16384 1 1146880
Scaling 10390 1 20780

Total GFLOPS per range line (pulse) 0.0051983
Total GFLOPS per node per second 2.6

 The various components of the azimuth processing
shown in Table 2 indicate that it takes ~78 GFLOPS to
process and output a 32K block (about 10000 by 13000
pixels) of imagery—which represents what one node
would have to accomplish during the allotted timeframe.

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

Unlike the range processing, the azimuth processing
requirements are more grow with range from the aircraft
because the overlap between successive azimuth blocks
grows. Table 2 is representative of the 10th node (swath
range from 34.6-36.2 KM) and must have its first 32K
block of data processed in azimuth 50 seconds before the
next block must be processed (node 1 only has 24 seconds
and uses 16K block sizes.) The total GFLOPS for node
10 is then 78 GFLOPS accomplished in 50 seconds or
1.56 sustained GFLOPS/second. On the average this
number is 1.52 GFLOPS/second for each of the 24 nodes
for a grand total of 36.6 GFLOPS/second required
azimuth processing.

Table 2. Azimuth Processing Operation Count

Azimuth (Block 32K and Presum 2)

Azimuth Compression Size Count GFLOP
Presum Value 32768 10390 25.53
Range Cell Migration Correction 16384 10308 5.66
Comp-Matched 16384 10308 14.86
Comp-IFFT 16384 10308 11.82
Azimuth Compression subtotal 57.88

Autofocus
Select Lines
Matched Filter 4096 2600 0.94
FFT 4096 2600 0.94
MapDrift
Matched nAzPs 16384 2600 3.75
8K IFFTx2 nAzPs 16384 2600 5.96
FFT nAzPs 16384 2600 2.98
IFFT nAzPs*2 32768 2600 6.39

Autofocus subtotal 20.66
Grand Total per 32K Block 78.54

 The total range requirement of 62.38 GFLOPS
combined with 36.6 GFLOPS of azimuth/output
processing requires sustaining on the order of 100
GFLOPS per second for the stated radar configuration.
Because the Coyote cluster has a peak of 614 GFLOPS
and the FFT benchmarks looked favorable 100 GFLOPS
seemed achievable.

4) Classes of optimization techniques
 Unfortunately, achieving 16% of peak performance is
not as simple as running with ‘gcc -O3’—the highest
compiler optimization flag. In our experience it took a
persistent effort at several entry points in the software and
hardware architecture. The optimization of the SAR task
revealed the strengths and subtle relationships that have a
large influence on large data signal processing
applications. Six classes are defined and analyzed to
reveal the most valuable optimization activities.

 At the operating system (OS) level optimizations
resulted from modifying the kernel configuration to
handle larger memory allocations per process
(approaching the entire 32-bit pointer limitation: ~4GB),
enabling the shared memory extensions in the kernel
configuration, and turning on the DMA hooks to avoid
thrashing the cache unnecessarily.
 The second class of optimization is parallel
techniques commonly used in cluster computing. The
SAR algorithm benefited by using a 4 stage pipeline so as
to minimize waiting that would have resulted from the
data-dependencies laden in strictly sequential processes.
A second fundamental benefit was an auto-load balancer
which monitored the activity for both the range and
azimuth processors to take advantage of the extra CPU
cycles in situations when one processor’s task was
finished sooner than the other.
 Next, optimizations came from hardware upgrades.
More important than clock rate advances were enlarging
the level 2 cache from 512K to 1 MB, and recently to 2
MB. This greatly improved performance on longer
transforms, which in turn led to less inefficiency with
overlaps. For example, understanding how a 16K FFT
reacts to L2 cache misses resulted in a 40% speedup after
upgrading to 1 MB. While not increasing the speedup
directly, upgrading to 8 GB of DRAM did provide for a
much larger optimization “landscape” and simplified the
shared memory approach to dual Xeon coordination.
 “Process specific” optimizations include modifying
compilation flags, and changing the program syntax so
that the resulting process is streamlined. Often when
setting particular optimization flags previously working
code has to be modified to fit the tighter compiler
constraints. Also part of this class of optimization is the
inclusion of special-purpose libraries—such as the vector
signal image processing libraries (VSIPL) used
extensively in this algorithm. In addition to VSIPL
libraries, CPU optimized (e.g., Intel Performance
Primitives) were also be included during compile and
linking operation.
 Eliminating redundancy and reducing I/O overhead
through efficient expressions of logic and consolidation
are exampes of optimizations in the domain-specific or
algorithm class. For example, moving vector allocations
outside loops and consolidating expensive corner turn
operations were important for stripmap SAR. Removing
redundancy and unneeded copying, even in some of the
VSIPL libraries, proved invaluable for the azimuth
processing task.
 Finally, the memory management class seems to have
a ubiquitous presence at all size problems. Initially, the
MATLAB code managed its intermediate data though the
hard disk—this was quickly removed as a major
slowdown—however handling 2-3 GB chunks of memory
is not easily done on 32-bit operating systems. Equally

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

challenging is keeping the cache from thrashing and byte-
aligning addresses 128 byte boundaries to be considerate
of cache line impacts. An important optimization for
range cell migration correction was to recast it to work
across whole cache lines before stepping, out-of stride, to
the next range cell. This reformulation eliminated a
costly cornerturn of the large matrix.
 Figure 4 shows the chronological contribution of
applying these optimizations and highlights the major
advances achieved in the case of the azimuth processing.
The software optimizations mainly occurred over a seven
month period. For a detailed annotation of the events on
this chart see Reference 10.
 The azimuth processing presented the most difficult
optimization challenge. With this in hand, the four stages
of the processing were able to sustain the arrival of 500
range lines per second across the 24 nodes. Compared to
the MATLAB consumption of 60000 range lines in 12.5
hours for just 1 node’s range extent, this is a speedup of
9000X.
 In preparation for a second set of flight tests in July
2006, eight new Xeon nodes with 2 MB L2 cache have
been procured. With further optimization of the FFT and
cornerturning routines, and by increasing the memory
available to the threads via kernel modifications, 32K
block azimuth processing is available across the whole
swath. Azimuth processing has been accelerated to 22
seconds for the 32K block. When combined with the
other computational stages, system PRF now exceeds 700
Hz and is approaching the goal of 800 Hz for these flight
tests.

C. Real-time exploitation and dissemination

 Producing hi-resolution imagery in real-time on an
aircraft results in hundreds of megabytes of data being
stored to disk every second. Being able to access this
large data repository onboard the aircraft might seem to
achievable. But providing exploitable access from an
offboard site requires a smart information management
strategy.
 The Joint Battlespace Infosphere (JBI)[7] provides
accessible, scalable, custom-query, low latency,
redundant, and intuitive information management
capabilities—so it was the logical choice. In addition to
those attributes the JBI uses a loosely-coupled publish and
subscribe architecture.
 During the flight tests, in order for the observer on
the ground to watch the events as they occurred in the air
the information management system had to relay
associated meta-data, particularly rectangles on a map
portraying the images just formed. After the flights this
meta-data can be used to replay each flight in the exact
sequence as it occurred. The database contains the
processed imagery, time, day, geo-registered location, leg,

and block size associated with all the processed imagery.
The ground user also uses the meta-data to produce a
custom query into the on-board SAR database. On flight
37, the latency in sending, servicing, and delivering the
results of a query took 14 seconds.

D. Integration of the US HPC with the Canadian
radar and aircraft systems and the UK A/D and
frontend hardware

 Moving from the protected lab environment to a real-
world flight test integration of multiple high performance
finely-tuned hardware systems is challenging. This
section details experiences embedding an HPC on-board a
Convair 580 and ensuring the HPC, front-end hardware,
and radar controllers successfully communicated.
 The HPC nodes were installed with the first 12 sitting
in in front of the remaining 13 (including head node).
The weight of the cluster required that it be positioned
near the aircraft center of gravity, approximately 30 feet
aft of the radar and frontend processing hardware.
 The aircraft systems were designed for power loads
from prior test configurations which maxed out at 8kW.
To host the HPC onboard, two 115V circuits had to be
used—a 15-amp for eight of the processing nodes and the
head node and a 20-amp for the remaining 16 back-end
nodes.
 Another challenge involved the aircraft cooling
system. Due to the heat generated by an HPC, ground-
based installations use raised floor and specialized
cooling to avoid CPU damage from excess ambient
temperatures. On the Convair, the temperatures were
regulated by channeling four passenger air ducts through
hoses down to the back and front sides of either cluster
rack.
 Initially connecting the front-end hardware to the
HPC revealed an issue with the network protocol. Since
the approved design document used to implement the
front-end network interface did not include all levels of
the network model, messages coming from the front-end
interface were not being properly addressed and packets
were being dropped. At the ARP protocol level MAC IDs
were not properly associating with node IP addresses.
Operation without dropping packets was successfully
achieved by running a script on the HPC cluster that
forced the correct ARP protocol associations to be made.
 Processing the image returns from the radar began
with the raw data being fed to the HPC from the front-end
interface—but the aircraft navigation data was also
needed from the radar system. Collecting the position
information from the radar data acquisition system
required extracting data fields from binary formatted
record structure. Using the header file descriptions and
associated receiver simulator the binary data was easily
translated into textual representation. The navigation

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

information was then distributed across the HPC cluster to
each of the 24 processing nodes through a mounted
network file system.
 A successful end-to-end integration test was
accomplished using the Range Filter Generation (RFG)
mode tests of the radar system. That mode exercised all
the components of the radar system, front-end processing
system, and the SAR imaging algorithm running on the
HPC. The visual representation of the pulse compressed
RFG signal in the time domain and frequency domains
was used during our final integration tests and in-between
flights to identify and resolve unexpected processing
results and data representations. It was this RFG test that
provided a confidence test before and after each flight leg.

E. Flight test experimentation and data collection

 Designing the flight test came out of several meetings
of TTCP Sensors Technical Panel on Signal/Image
Processing.[3] Hexagonal flight patterns were chosen to
image and record six differing angles on the same ground
location. These datasets will support subsequent research
into fusing multi-perspective imagery into three-
dimensional (3-D) models of objects in the scenes. The
second goal was to collect imagery around 1) a densely
populated city environment and 2) an area centered on a
high traffic maritime location. The chosen locations to
satisfy those requirements are Ottawa and Kingston,
Ontario, both located on the southeast region of Canada.
A sample flight path and associated hexagon coverage is
shown in Figure 5.
 The number of hexagons per flight was limited by the
available disk storage space. Initial estimates of 4.8
terabytes of raw and processed imagery per hexagon
limited each flight to two hexagons. Six planned flights
were to be spread across a three week window with the
following pattern: fly on day one; do post
processing/analysis for days two, three; and then fly again
on day four.
 To achieve a data link connection from the aircraft to
Rome, NY several options were considered. A 900MHz
commercial radio LAN Bridge[4] was the quickest
available selection and provided up to 300 Kbits/sec link
capacity.
 The primary data set is the raw SAR returns. When
the SAR radio frequency returns hit the ground area of
interest the reflections were collected at an average rate of
500 pulses per second. All digitized samples were
distributed across three groups of eight nodes each on the
Coyote cluster. This data allows for re-processing the
hexagon of information with specifically tuned
parameters to get a custom-focused picture.
 Although the five flights indicate seven hexagons (42
legs) of data were flown--only a subset of that data was
collected due to various problems which eliminated some

legs. A total of 3.2 terabytes of raw data was collected.
That equates to six legs of data in the Kingston area and
23 legs of data in the Ottawa region.
 Processed imagery is the second major data set. A
total of 4.1 terabytes of processed data was collected for
the same location and number of legs as mentioned for the
raw data.

4. Results

 The frontend hardware was able to acquire a 37 km
swath of 15 cm range cells at a 500 Hz rate and form up
24 overlapped range extents. These were then segmented
into UDP packets and sent over 8 gigabit Ethernet links to
the 24 processing nodes of the HPC. The general utility
of capturing high speed A/D information and packetizing
it for consumption by Ethernet based clusters led this
solution to become a commercial product.[3]

 Work to optimize the real-time SAR image formation
processing succeeded in meeting the demands of a 500 Hz
PRF system configuration. The overall speedup was
approximately 9000X over the initial algorithm
specification. Major speedups resulted from use of
optimized libraries, eliminating time consuming
cornerturn operations, and selecting sizings mindful of
Level 2 cache capacities.
 On the last flight, the stretch goal of linking the
onboard information management environment to a
similar environment on the ground via radio link and the
internet was accomplished. Metadata published onboard
the airplane in Canada appeared on user consoles in
Rome, NY within two seconds, and images queried by
ground users were served up by the airborne database and
returned to the ground within 14 seconds.
 After extensive system integration in August 2005,
five flight tests were accomplished by mid-September
2005. Hexagonal flight path with 40 km sides were flown
with the radar imaging the inside of the hexagon to allow
multiperspective looks at the area. In addition to the real-
time imaging and exploitation, the raw data was written to
disk, as were the images produced. Overall 7.3 TB of
data was collected to support future research.

5. Conclusion

 Wide swath, high resolution SAR image formation
has been a challenging signal/image processing problem
to confront HPC computer architectures. However,
through a combination of optimization and parallelization,
a 9000X speedup has been achieved, which now allows
real-time formation of 37 km wide strips of imagery with
<1m resolution. Twenty-four dual Xeon nodes costing
less than $100K are capable of sustaining the real-time
throughput of 100 GFLOPS and continuously produce

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

imagery at a rate of 3.43 km2/second. FPGAs allow
commercial high speed A/D converters to be connected to
the cluster across gigabit Ethernet links. An onboard
information management system allows the imagery to be
published and exploited remotely within seconds. The
system has be successfully flight tested, with a large set of
raw radar returns and processed images stored to support
future investigations of new HPC architectures and
signal/image processing algorithms.

References

1. Soumekh, M., Synthetic Aperture Radar Singnal Processing
with MATLAB Algorithms, John Wiley & Sons, New York, NY,
1999.
2. Linderman, R., “Swathbuckler: Wide Swath SAR System
Architecture.” Proceedings of the 2006 IEEE Radar Conference,
pp. 465–470, April 2006.
3. The Technical Cooperation Program, Sensors Group,
http://www.dtic.mil/ttcp/sen.htm, accessed September 2005.
4. Puschel, M. et al., “Spiral: Code Generation for DSP
Transforms.” Proceedings of the IEEE special issue on Program
Generation, Optimization, and Adaptation, Vol. 93, No. 2, Feb.
2005.
5. Rouse, S. and D. Bosworth, “Swathbuckler Wide Area SAR
Processing Front End.” Proceedings of the 2006 IEEE Radar
Conference, pp. 673–678, April 2006.
6. Damini, A., C. Parry, and G.E. Haslam, “Swathbuckler—
Radar System and Signal Processing.” Proceedings of the 2006
IEEE Radar Conference, pp. 30–34, April 2006.
7. Linderman, R., M. Linderman, and C.S. Lin, “FPGA
Acceleration of Information Management Services.” IEEE
Military Applications of Programmble Logic Devices
Conference, September 2005.
8. CodeSourcery, LLC, VSIPL++ Specification: 1.0 candidate
rev C, 2005.
9. Microhard Systems Inc., SpectraNT 920 Operating Manual,
900MHz Spread Spectrum Industrial Ethernet Bridge, Rev 0.10,
19 October 2004.
10. Tucker, S., R. Vienneau, J. Corner, and R. Linderman,
“Swathbuckler: HPC Processing & Information Exploitation.”
Proceedings of the 2006 IEEE Radar Conference, pp. 710–717,
April 2006.

Figure 1. Sample Stripmap SAR image from AFRL

HPC off-line processing

Figure 2. Swathbuckler system architecture with

embedded HPC cluster

Figure 3. Illustration of data decomposition of SAR

algorithm

Figure 4. Azimuth processing reduction timeline

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

Figure 5. Ottawa, Ontario hexagon flight patter

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore. Restrictions apply.

